
Advanced Mac OS X
Networking

Session 809

Advanced Mac OS X
Networking

Vincent Lubet
Manager, Core OS Networking Team

Introduction
•Performance
•NKE
•IPSec
•IPv6

What You Will Learn
•How to take advantage of some of

the new networking features
•How to get the best performance

for networking applications
•The caveats of kernel programming

Mac OS X Advanced Networking

Core Services

DarwinDarwin

Java CocoaCocoa

Core OSCore OS

BSD
Kernel
BSD

Kernel

Mach KernelMach Kernel
DriversDrivers

I/O KitI/O Kit

File
System

File
System

NetworkingNetworking

ATalkATalk IPIP

Application
Environments

Application
Environments

CocoaCarbon

Application Services

Performance for
Network Applications

Performance
•Do not poll

• Polling uses 100% of CPU
• Hurts other processes
• Wastes energy
• Shortens portable autonomy

•OT sync-idle events is a form of polling

Performance
•Block or be event driven
•Use blocking mode with threads
• Recycle threads if you can

•Be event driven
• For sockets use select

• For OT use async mode with notifiers
• Run loop for network APIs above Sockets

Performance
•Open Transport on Mac OS X is slow
•A lot context switches

• Emulation of execution levels
•Lookups are serialized
•10–15% impact on performance
•Problems compound with number of endpoints

Performance
•Watch for buffer size
•Buffer size is critical for performance

• Too small=high context switch overhead
• Too large=starves VM for buffers

•Things to tune
• Socket buffer size (SO_SNDBUF, SO_RCVBUF)
• Size of buffer passed to send/receive calls

•Size of socket receive buffer directly affects
TCP window size

Performance
•Minimize latency

• Cooperative threads should be avoided
• Stream data flow, do not wait for all data

•Disk I/O can affect network I/O
• Same rules apply to both kinds of I/O

•Do not optimize at expense of efficiency
• Tools: top, fs_usage, sample, …

•See Session 906 for more information

Network Kernel Extensions

Network Kernel Extensions
•Extends Networking services
•No need to recompile kernel
•Dynamic loading and unloading
•Running in the kernel comes

with responsibilities

NKE Binary Compatibility Issues
•No real API, the Kernel is wide open
•Headers do not discern between what is

public and what is private
•Kernel data structures and implementation

details are exposed
•We cannot guarantee backward compatibility

NKE Binary Compatibility Issues
•Kernel data structures and functions

will change
• Bug fixes
• New functionality
• Performance enhancements

NKE Alternatives
•Avoid NKE when possible
•Use IOKit for network interfaces

• IONetworkingFamily for Ethernet
• IOSerialFamily for PPP

•Use IOKit user client
•Use PF_ NDRV for protocol handlers

in user space

NKE Do and Don’t
•Do strip global symbols
•Do not look at kernel data structures

• Pretend structures are opaque
•Sockets functions OK

• Still lots of accessors are macros!

Jaguar Impact on NKE
• IPv6 and IPSec added to TCP/IP control block
• mbuf routines to isolate implementation
• soconnect intercept functions run before protocol
• soaccept now returns error instead of a socket

• Allows for EJUSTRETURN

• NKEMgr deprecated
• New kernel event protocol in PF_SYSTEM

• ifnet can be detached

Jaguar Impact on NKE
•We have cleaned up the Dev SDK headers

• Do not use anything that does not
appear in a public header

•We are making private more symbols
•No forward compatibility

NKE Call to Action
•Plan for sustainable Kernel APIs
•Use nm to list global symbols
•Use kextload to check properties and report

common mistakes
•Work with us

• Seed us with your KEXTs

IPSec

Josh Graessley
Core OS Networking

IPSec: Why
•Secure IP communications

• Prevent Eavesdropping
• Authenticate Origin
• IETF Standard

•Virtual Private Networks
• IPSec ≠ VPN

IPSec: What
•Per packet Authentication and Encryption

• Any IP ‘transport’ is supported
• Transparent to applications
• Host-to-host, no notion of “users”

IPSec: What
•Authenticate

• AH (Authentication Header)
•Encrypt

• ESP (Encapsulated Secure Payload)
•Compress

• IPComp (IP Compression)

AH: Authentication Header
•Protect IP header and payload

• Validate originator
• Detect modifications
• Detect duplicates

•Supports Multiple Algorithms
• hmac-md5, hmac-sha1, …

ESP: Encapsulated
Security Payload

•Encrypt payload
• Protection against wiretap
• Protects payload only, not IP header

•Authentication of payload
•Multiple Algorithms

• Triple DES, AES, blowfish, …

IPComp: IP Compression
•Compress payload

• Compress before encrypt
•Multiple algorithms

• Jaguar supports inflate/deflate
•In kernel implementation is expensive
•Not widely used

IPSec: Modes
•Tunnel Mode

• VPN scenario
• Network-to-network
• Host-to-network

•Transport Mode
• Host-to-host

IPSec: Security Policies
•Policy defines filter

• Source/destination address range
• Source/destination port range
• IP protocol (TCP, UDP, ICMP, …)

•Policy defines rule
• Bypass IPSec
• Require IPSec
• Use IPsec
• Discard

IPSec: Security Association (SA)
•Defines algorithm
•Defines key
•One direction only
•May Timeout

• Based on time
• Based on traffic

IKE: Internet Key Exchange
•Authenticate remote host

• Pre-shared key
• Certificates
• Kerberos

•Exchange keys
•Negotiate algorithm

IPSec: APIs
• PF_KEY socket

• Set Security Policies
• Set Security Associations
• Receive notification of changes
• Requires root

• IP_SEC_POLICY socket option
• Per socket policy
• Requires root to bypass IPSec

IPSec: Tools
•setkey

• Set Security Policies
• Set Security Associations

•racoon
• Daemon implementing IKE
• Exchanges Keys if Security Association is missing
• Creates Security Association
• Not running by default

Demo
Josh Graessley

Core OS Networking

Advanced Mac OS X
Networking: IPv6

Laurent Dumont
Core OS Networking

Motivations for IPv6
•Addresses Internet growth problems

• Address Space exhaustion
• Routing Meltdown
• NAT breaks end-to-end connectivity

•International markets (Asia, Europe)
• IPv4 Addresses are scarce

•Includes new standards
• IPsec, multicast, autoconfiguration

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Header Structure

Destination Address

Vsn Flow Label

Payload Length

Source Address

Next Hdr. Hop Cnt.

Class

IPv6 Addresses
•128 bits instead of 32
•From 4 billion to 340 undecillion (3.4 * 10^38)
•Addressing architecture

• Classless Interdomain Routing
• Address Structure

• Unicast Addresses
• Local Use Addresses
• Multicast

Locally AdministeredLocally AdministeredGlobally AdministeredGlobally Administered
8 Octets 8 Octets

IPv6 Address Architecture
•IPv6 Address Scopes

• Link-Local
• Site-Local
• Global

ICMPv6
•Error messages
•Echo request/reply
•Multicast Listener Discovery
•Neighbor Discovery

• Replacement for ARP
• Router Discovery
• Prefix Discovery

IPv6 Auto-Configuration
•AppleTalk-like ease of setup in an IP

environment
• Improved support for networking in

the home, ad hoc networking, etc.
• Auto-configuration designed in from

the start
•Fits in with the ideas behind Rendezvous

How Auto-Configuration Works

Link Local AddressLink Local Address

How Auto-Configuration Works

Link Local AddressLink Local Address

Site Local AddressSite Local Address

How Auto-Configuration Works

Link Local AddressLink Local Address

InternetInternet

RouterRouter

More Auto-Configuration

Site Local AddressSite Local Address

Link Local AddressLink Local Address

More Auto-Configuration

Site Local AddressSite Local Address

Link Local AddressLink Local Address

InternetInternet

RouterRouter

Global AddressGlobal Address

More Auto-Configuration

Site Local AddressSite Local Address

Link Local AddressLink Local Address

InternetInternet

RouterRouter

IPv6 in Mac OS X

Core Services

DarwinDarwin

Java CocoaCocoa

BSD
Kernel
BSD

Kernel

Mach KernelMach Kernel
DriversDrivers

I/O KitI/O Kit

File
System

File
System

NetworkingNetworking

ATalkATalk IPIP

CocoaCarbon

Application Services

NetworkingNetworking

IPv4IPv4 IPv6 ATalkATalk

IPv6 in Mac OS X
•Available in Jaguar

• For developers and advanced users
• No support in System Configuration yet

•Based on the Open Source work of KAME
• Standard for BSD implementations

•Kernel, command-line tools, headers
and libraries

IPv6 in Mac OS X
•Support for Transition

• Dual Stack implementation
• 6to4: IPv6 tunnel over IPv4
• IPv6 Routing

•Auto-configuration
• Neighbor Discovery

•DNS for IPv6 in Jaguar
• AAAA records via IPv4 DNS only

IPv6 in Mac OS X
•Tools

• ifconfig, ping6, traceroute6, netstat,
route, tcpdump, rtsol

•Apps
• ssh, ftp, telnet

•Good examples of Protocol Independent
implementation

Be IP Version Agnostic
•IPv6 addresses are bigger (128 bits)
•Interfaces have multiple addresses

• Do not identify an interface by
an address

• Do not assume AF_INET length,
use getifaddrs

•Addresses can be autoconfigured
• Multiple scopes

IPv6 in Mac OS X: APIs
•Basic BSD APIs (RFC 2553)

• IPv4 Binary compatibility
• Allows for IPv6/IPv4 independent programming

• getaddrinfo is the main address independent API
• Use it instead of gethostbyname

•Check Jaguar man pages for new resolver calls:
• getnameinfo, getipnodebyname, inet_pton,

inet_ntop

IPv6 in Mac OS X: APIs
•Advanced BSD APIs (RFC 2292)

• Provides access to new IPv6 only
functionalities

• Raw IPv6 socket standardization
•For higher level APIs—use CFNetwork
•For more details about protocol independence

http://www.kame.net/newsletter/19980604

Roadmap
100 The Darwin Road Map

108 Managing Kernel Extensions Civic
Wed., 10:30am

Civic
Wed., 10:30am

107 The Darwin Kernel

FF012 Core OS Networking

Room A1
Mon., 2:00pm

Room A1
Mon., 2:00pm

Civic
Wed., 9:00am

Civic
Wed., 9:00am

Room J1
Fri., 2:00pm

Room J1
Fri., 2:00pm

906 Developing for Performance Hall 2
Fri., 9:00am

Hall 2
Fri., 9:00am

Who to Contact
Tom Weyer
Network and Communications Evangelist
weyer@apple.com

Vincent Lubet
Manager, Core OS Networking Team
vlubet@apple.com

http://developer.apple.com/wwdc2002/urls.html

For More Information
•KAME IPv6 and IPSec

http://www.kame.net

•FreeBSD How-To
http://www.freebsd.org/handbook/ipsec.html

•Other performance tips: Mac OS X Perf book
http://developer.apple.com/techpubs/macosx/
Essentials/Performance

•Darwin programming documentation
http://developer.apple.com/techpubs/macosx/Darwin

Q&A

Tom Weyer
Network and Communications Evangelist

weyer@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

